Счётчик электрической энергии

ЦЭ 6803В

тип корпуса РЗ1, ШЗЗ

Руководство по эксплуатации ИНЕС.411152.088.01 РЭ (Модификация 1)

Архангельск (8182)63-90-72 Астана + 7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянок (4832)59-03-52 Владивосток (423)249-28-31 Волоград (8172)6-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-5-89 Иваново (4932)77-34-06 Ижевск (3412)6-03-58 Имуртск (345) 279-98-46

Киргизия (996)312-96-26-47

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)85-04-62 Киров (835)28-04-04 Красноэра (881)203-40-90 Красноэра (881)203-40-90 Красноэра (881)203-40-90 Курок (4712)7-71-30-4 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгоров (1831429-98-12 Казахстан (772)734-952-31

Казань (843)206-01-48

Новокузнеци (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбурт (3523)37-68-04 Пенза (8412)22-31-16 Пермы (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Самист-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Таджижистан (992)427-82-92-69

Эл. почта erg@nt-rt.ru || Сайт: http://energomera.nt-rt.ru

Смопенск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сурут (3462)77-98-35 Тверь (4822)83-31-35 Томск (3822)88-41-53 Тули (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновок (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (421)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64

Настоящее руководство по эксплуатации предназначено для изучения счетчика электрической энергии ЦЭ6803В (в дальнейшем – счетчика) и содержит описание его принципа действия, а также сведения, необходимые для правильной эксплуатации.

К работе со счетчиком допускаются лица, специально обученные для работы с напряжением до 1000 В и изучившие настоящее руководство по эксплуатации.

1 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 1.1 По безопасности эксплуатации счетчики удовлетворяют требованиям безопасности по ГОСТ 22261-94 и ГОСТ Р 51350-99.
- 1.2 По способу защиты человека от поражения электрическим током счетчики соответствуют классу II по ГОСТ Р 51350-99.
- 1.3 Изоляция между цепями тока и цепями напряжения с одной стороны и выводами электрического испытательного выходного устройства, соединенными с "землей" с другой стороны выдерживает в течение 1 мин воздействие испытательного напряжения 4 кВ (среднеквадратическое значение) практически синусоидальной формы с частотой ($50 \pm 2,5$) Гц.

- 1.4 Сопротивление изоляции между корпусом и электрическими цепями не менее:
 - 20 МОм в условиях п. 2.4;
- 7 МОм при температуре окружающего воздуха (40 \pm 2) °C при относительной влажности воздуха 93 %.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1 Счетчик удовлетворяет ГОСТ Р 52320-2005, ГОСТ Р 52322-2005.
- 2.2 Структура условного обозначения счетчика приведена на рисунке 1. Условное обозначение счетчика, постоянная счетчика и положение запятой приведены в таблице 1.
- 2.3 Внешний вид счетчика ЦЭ6803В в корпусах РЗ1 и ШЗ3 приведен в приложении А.

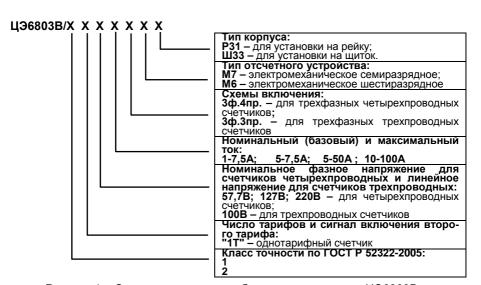


Рисунок 1 – Структура условного обозначения счетчика ЦЭ6803В

Таблица 1

Условное обозначение счетчика	Постоянная счетчика, имп/кВт∙ч	Положение запя- той
ЦЭ6803В/Х 1Т 57,7В 5-7,5А 3ф.4пр. М6(М7) Ш33	16000	0000,00(00000,00)
ЦЭ6803B/X 1T 100B 5-7,5A 3ф.3пр. М6(M7) Ш33	16000	0000,00(00000,00)
ЦЭ6803B/X 1T 220B 1-7,5A 3ф.4пр. М6(M7) Ш33	3200	00000,0(000000,0)
ЦЭ6803B/X 1T 220B 5-50A 3ф.4пр. М6(M7) Ш33	640	000000(0000000)
ЦЭ6803B/X 1T 220B 10-100A 3ф.4пр. М6(М7) Ш33	320	000000(0000000)
ЦЭ6803B/X 1T 220B 1-7,5A 3ф.4пр. M6(M7) P31	3200	00000,0(000000,0)
ЦЭ6803B/X 1T 220B 5-50A 3ф.4пр. M6(M7) P31	640	000000(0000000)
ЦЭ6803B/X 1T 220B 10-100A 3ф.4пр. М6(М7) Р31	320	000000(0000000)

2.4 Счетчик подключается к трехфазной сети переменного тока и устанавливается в местах, имеющих дополнительную защиту от влияния окружающей среды (помещения, стойки) с рабочими условиями применения:

температура окружающего воздуха от минус 40 до 60 °C;

относительная влажность воздуха до 98 % при 35 °C;

частота измерительной сети (50 \pm 2,5) Гц или (60 \pm 3) Гц;

форма кривой напряжения - синусоидальная с коэффициентом несинусоидальности не более 12 %.

2.5 Технические характеристики

Гарантированными считают технические характеристики, приводимые с допусками или предельными значениями. Значения величин без допусков являются справочными.

- 2.5.1 Максимальная сила тока составляет:
- 7,5А в счетчиках, предназначенных для включения через трансформаторы тока;

50А или 100А в счетчиках непосредственного включения.

- 2.5.2 Счетчики изготавливаются класса точности 1 или 2 по ГОСТ Р 52322-2005.
- 2.5.3 Полная (активная) мощность, потребляемая каждой цепью напряжения счетчика не превышает 6 В•А (0,6 Вт) при номинальном напряжении 220 В, не превышает 4 В•А (0,6 Вт) при номинальном напряжении 100 В, не превышает 2,5 В•А (0,6 Вт) при номинальном напряжении 57,7 В, при нормальной температуре, номинальной частоте.
- 2.5.4 Полная мощность, потребляемая каждой цепью тока не превышает 0,1 В∙А при базовом или номинальном токе, при нормальной температуре и номинальной частоте.
 - 2.5.5 Масса счетчика не более 1 кг.
- 2.5.6 Счетчик имеет счетный механизм, осуществляющий учет электрической энергии непосредственно в киловатт-часах.
- 2.5.7 Проверка без тока нагрузки (самоход). При разомкнутых цепях тока и при напряжениях равных 1,15 номинального значения испытательное выходное

устройство счетчиков не создает более одного импульса в течение време Δu t, мин., вычисленного по формуле:

$$\Delta t \ge \frac{R \cdot 10^{\circ}}{k \cdot m \cdot U_{HOM} \cdot I_{MAKC}} \tag{1}$$

где k — постоянная счетчика (число импульсов испытательного выходного устройства счетчика на $1 \kappa B T \bullet 4$), имп/к $B T \bullet 4$;

т – число измерительных элементов;

U_{ном} – номинальное напряжение, В;

Імакс – максимальный ток, А;

R – коэффициент, равный 600 для счетчиков класса точности 1, равный 480 для счетчиков класса точности 2.

2.5.8 Стартовый ток (чувствительность). Счетчики начинают и продолжают регистрировать показания при значениях тока, указанных в таблице 2 и коэффициенте мощности равном 1.

Таблица 2

Pictuolino cuotingo	Класс точности счетчика		
Включение счетчика	1	2	
непосредственное	0,004 l _б	0,005 l _б	
через трансформаторы тока	0,002 I _{HOM}	0,003 І _{ном}	

2.5.9 Предел допускаемых значений основной относительной погрешности $\delta_{\text{Д}}$ в процентах соответствует таблице 3.

Пределы допускаемых значений основной относительной погрешности нормируют для информативных значений входного сигнала:

напряжение — (0,8...1,15) U_{ном};

частота измерительной сети – $(50 \pm 2,5)$ Гц или (60 ± 3) Гц.

2.5.10 При напряжении ниже 0,8 U_{ном} погрешность счетчика находится в пределах от плюс 10 % до минус 100 %.

Таблица 3

Значение тока для счетчиков		Коэффи-	Пределы допускаемой основ	
		циент	ной погрешно	сти, %, для
		мощности	счетчиков класс	са точности
с непосредственным	включаемых через		1	2
включением	трансформатор			
$0.05 I_{6} \le I < 0.10 I_{6}$	$0.02 I_{H} \le I < 0.05 I_{H}$	1.00	± 1,5	± 2,5
$0,10 _{6} \le 1 \le I_{MAKC}$	$0.05 I_H \le I \le I_{MAKC}$	1,00	± 1,0	± 2,0
0,10 l ₆ ≤ l < 0,20 l ₆	0,05 l _H ≤ l < 0,10 l _H	0,5 (инд)	. 1 5	± 2,5
0,10 16 \(\) 1 < 0,20 16	0,05 I _H ≤ I < 0, I 0 I _H	0,8 (емк)	± 1,5	_
0.201-<1<1	0101 < 1<1	0,5 (инд)	+10	± 2,0
0,20 I _б ≤ I ≤ I _{макс}	$0,10 \mid_{H} \leq I \leq I_{MAKC}$	0,8 (емк)	± 1,0	_

2.5.11 Пределы допускаемых значений дополнительной погрешности вызванной присутствием постоянной составляющей и четных гармоник в цепях переменного тока для счетчиков непосредственного включения классов точности 1 и 2 не превышает $3\delta_{\rm L}$.

Требование не распространяется на счетчики, работающие с трансформаторами тока.

2.5.12 Счетчики с непосредственным включением выдерживают кратковременные перегрузки входным током, превышающим в 30 раз $I_{\text{макс}}$, в течение одного полупериода при номинальной частоте, а счетчики, включаемые через трансформаторы тока выдерживают в течение 0,5 с перегрузки входным током, превышающим в 20 раз $I_{\text{макс}}$, при номинальной частоте. Изменение погрешности после испытания не превышает значений, приведенных в таблице 4.

Таблица 4

Включение счетчика	Значение тока	Коэффициент мощности	Пределы изменения погрешности, %, для счетчиков класса точности	
			1	2
непосредственное	I ₆	1	± 1,5	± 1,5
через трансформаторы тока	I _H	1	± 0,5	± 1,0

- 2.5.13 Средняя наработка на отказ счетчика не менее 160000 ч.
- 2.5.14 Средний срок службы до первого капитального ремонта счетчиков 30 лет.
- 2.5.15 Предприятие-изготовитель оставляет за собой право вносить незначительные изменения в конструкцию счетчика, не ухудшающие качества.
 - 2.6 Устройство и работа счетчика
- 2.6.1 Принцип действия счетчика основан на преобразовании активной мощности в частоту импульсов, подсчет которых отсчетным устройством дает величину потребленной электрической энергии.
 - 2.6.2 Конструктивно счетчик выполнен в пластмассовом корпусе.
- В корпусе размещены печатные платы, на которых расположена вся схема счетчика.

Зажимы для подсоединения счетчика к сети и контакты испытательного выходного устройства закрываются пластмассовыми крышками.

3 ПОДГОТОВКА И ПОРЯДОК РАБОТЫ

- 3.1 Распаковывание
- 3.1.1 После распаковывания провести наружный осмотр счетчика, убедиться в отсутствии механических повреждений, проверить наличие пломб.
 - 3.2 Порядок установки

3.2.1 Монтаж, демонтаж, вскрытие, ремонт, поверку и клеймение счетчика должны проводить только специально уполномоченные организации и лица, согласно действующим правилам по монтажу электроустановок.

При монтаже счетчиков провод (кабель) необходимо очистить от изоляции примерно на величину указанную в таблице 5. Зачищенный участок провода должен быть ровным, без изгибов. Вставить провод в контактный зажим без перекосов. Не допускается попадание в зажим участка провода с изоляцией, а также выступ за пределы колодки оголенного участка. Сначала затягивают верхний винт. Легким подергиванием провода убеждаются в том, что он зажат. Затем затягивают нижний винт. После выдержки в несколько минут подтянуть соединение еще раз.

Диаметр подключаемых к счетчику проводов указан в таблице 5.

Таблица 5

Счетчик с диапазоном	Длина зачищаемого	Диаметр поперечного сече-
тока	участка провода, мм	ния провода, мм
≤ 7 ,5A	25	1÷6
≤ 50A	27	1÷7
≤ 100A	20	2÷8

- 3.2.2 Периодичность государственной поверки 16 лет.
- 3.2.3 Счетчик следует устанавливать с учетом требований п. 1.2.

3.2.4 Провести наружный осмотр счетчика, убедиться в отсутствии механических повреждений, проверить наличие пломб.

Внимание! Наличие на индикаторе показаний является следствием поверки счетчика на предприятии-изготовителе, а не свидетельством его износа или эксплуатации.

3.2.5 Подключить счетчик для учета электрической энергии к трехфазной сети переменного тока. Для этого снять крышку и подводящие провода закрепить в зажимах колодки по схеме включения, нанесенной на крышке и приведенной в приложении Б.

Внимание! Счетчики ЦЭ6803В 220В 1-7,5А подключаются к трансформаторам тока с номинальным вторичным током 5 А.

В случае необходимости включения счетчика в систему АСКУЭ, подсоединить сигнальные провода к контактам испытательного выходного устройства в соответствии со схемой включения, приведенной в приложении Б.

- 3.3 Указания по подключению испытательного выходного устройства (телеметрических выходов).
- 3.3.1 Испытательное выходное устройство реализовано на транзисторе с "открытым" коллектором и для обеспечения его функционирования необходимо подать питающее напряжение постоянного тока не более 24 В по схеме, приведенной на рисунке 2. Форма сигнала $F_{\text{вых}}$ прямоугольные импульсы с амплитудой, равной поданному питающему напряжению.

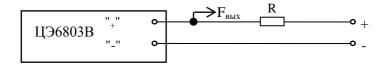


Рисунок 2 – Схема включения испытательного выходного устройства

3.3.2 Величина электрического сопротивления R, Ом в цепи нагрузки определяется по формуле

$$R = U / I \tag{2}$$

где: U - напряжение питания, B;

I - сила тока, A.

3.3.3 Номинальное напряжение на контактах испытательного выходного устройства в состоянии "разомкнуто" равно (10 ± 2) В, максимально допустимое 24 В.

3.3.4 Величина номинального тока через контакты испытательного выходного устройства в состоянии "замкнуто" равна (10 ± 1) мА, максимально допустимая не более 30 мА.

Частота импульсов испытательного выходного устройства пропорциональная входной мощности.

- 3.4 Светодиодная индикация
- 3.4.1 Для отображения режимов работы счетчика на панель выведены светодиодные индикаторы. При подключении счетчика к сети включается светодиод "СЕТЬ".

При подключении сети и нагрузки светодиодный индикатор "А" должен периодически включаться и отсчетное устройство должно менять показания.

3.5 Убедившись в нормальной работе счетчика, закрепить крышку зажимов с помощью винта. Опломбировать посредством соединения отверстия крышки и отверстия винта проволокой пломбировочной и навешиванием пломбы.

4 ПОВЕРКА ПРИБОРА

4.1 Поверка счетчика проводится при выпуске из производства, после ремонта и в эксплуатации по инструкции "Счетчики электрической энергии типа ЦЭ6803В. Инструкция по поверке 411152.028 ИЗ", согласованной ГЦИ СИ ВНИИМС.

5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 5.1 Техническое обслуживание счетчика в местах установки заключается в систематическом наблюдении за его работой.
- 5.2 Периодическая поверка счетчика проводится в объеме, изложенном в разделе 4 настоящего руководства по эксплуатации один раз в 16 лет или после среднего ремонта.
- 5.3 При отрицательных результатах поверки ремонт и регулировка счетчика осуществляется организацией, уполномоченной ремонтировать счетчик.

Последующая поверка производится в соответствии с п. 5.2.

6 ТЕКУЩИЙ РЕМОНТ

6.1 Возможные неисправности и способы их устранения потребителем приведены в таблице 6.

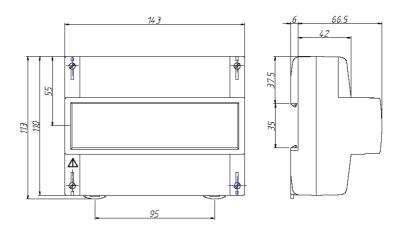
Таблица 6

Наименование неис- правности и внешнее проявление	Вероятная причина	Способ устранения
1 Погашен светодиод	1 Обрыв или ненадежный контакт подводящих проводов 2 Отказ в электронной схеме счетчика	1 Устраните обрыв, на- дежно закрутите винты 2 Направьте счетчик в ремонт
2 Остановка счета потребленной энергии светодиод включен.	1 Отказ в электронной схеме счетчика	1 Направьте счетчик в ремонт
3 При периодической поверке погрешность вышла за пределы допустимой	1 Уход параметров элементов определяющих точность в электронной схеме счетчика 2 Отказ в электронной схеме счетчика	1 Направьте счетчик в ремонт

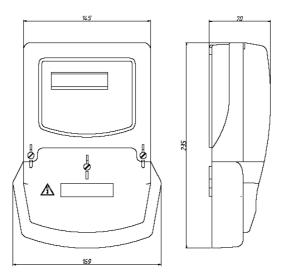
7 УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- 7.1 Хранение счетчиков производится в упаковке предприятия-изготовителя при температуре окружающего воздуха от 5 до 40 °C и относительной влажности воздуха 80 % при температуре 25 °C.
- 7.2 Счетчики транспортируются в закрытых транспортных средствах любого вида.

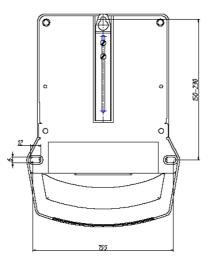
Предельные условия транспортирования:


температура окружающего воздуха от минус 50 до 70 °C;

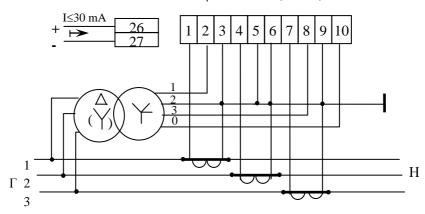
относительная влажность 98 % при температуре 35 °C;

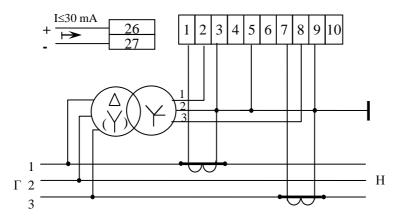

транспортная тряска в течение 1 ч с ускорением 30 м/с 2 при частоте ударов от 80 до 120 в мин.

ПРИЛОЖЕНИЕ А

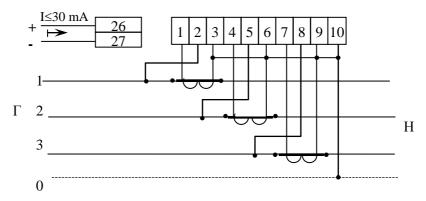

(обязательное) Внешний вид счетчика ЦЭ6803В Тип корпуса Р31

Тип корпуса Ш33


Установочные размеры счетчика ЦЭ6803В (тип корпуса ШЗЗ)


приложение Б

(обязательное)


Схема включения счетчика ЦЭ6803В/Х 57,7В 5-7,5А ШЗЗ

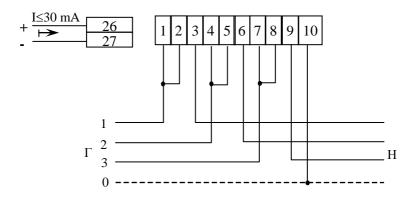

Схема включения счетчика ЦЭ6803В/Х 100В 5-7,5А ШЗЗ (с двумя трансформаторами тока)

Схема включения счетчиков ЦЭ6803В/Х 220В 1-7,5А ШЗЗ

Схема включения счетчиков ЦЭ6803В/Х 220В 5-50А (10-100А) ШЗЗ

Внимание! Перемычки между контактами 1 и 2, 4 и 5, 7 и 8 расположены на токовводной колодке счетчика. Перед подключением счетчика убедиться в том, что перемычки находятся в замкнутом состоянии.

Схема включения счетчиков ЦЭ6803В/Х 220В 1-7,5А РЗ1

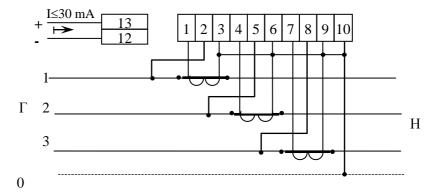
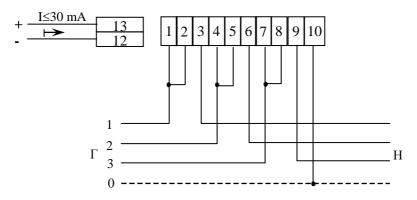



Схема включения счетчиков ЦЭ6803В/Х 220В 5-50А (10-100А) Р31

Внимание! Перемычки между контактами 1 и 2, 4 и 5, 7 и 8 расположены на токовводной колодке счетчика. Перед подключением счетчика убедиться в том, что перемычки находятся в замкнутом состоянии.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72	Казань (843)206-01-48	Новокузнецк (3843)20-46-81	Смоленск (4812)29-41-54
Астана +7(7172)727-132	Калининград (4012)72-03-81	Новосибирск (383)227-86-73	Сочи (862)225-72-31
Астанаань (8512)99-46-04	Калуга (4842)92-23-67	Омск (3812)21-46-40	Ставрополь (8652)20-65-13
Барнаул (3852)73-04-60	Кемерово (3842)65-04-62	Орел (4862)44-53-42	Сургут (3462)77-98-35
Белгород (4722)40-23-64	Киров (8332)68-02-04	Оренбург (3532)37-68-04	Тверь (4822)63-31-35
Брянск (4832)59-03-52	Краснодар (861)203-40-90	Пенма (8412)22-31-16	Томск (3822)98-41-53
Владивосток (423)249-28-31	Красноярск (391)204-63-61	Пермь (342)205-81-47	Тула (4872)74-02-29
Волгоград (844)278-03-48	Курск (4712)77-13-04	Ростов-на-Дону (863)308-18-15	Тюмень (3452)66-21-18
Вологда (8172)26-41-59	Липецк (4742)52-20-81	Рязань (4912)46-61-64	Ульяновск (8422)24-23-59
Воронеж (473)204-51-73	Магнитогорск (3519)55-03-13	Самара (846)206-03-16	Уфа (347)229-48-12
Екатеринбург (343)384-55-89	Москва (495)268-04-70	Санкт-Петербург (812)309-46-40	Хабаровск (4212)92-98-04
Иваново (4932)77-34-06	Мурманск (8152)59-64-93	Саратов (845)249-38-78	Челябинск (351)202-03-61
Ижевск (3412)26-03-58	Набережные Челны (8552)20-53-41	Севастополь (8692)22-31-93	Череповец (8202)49-02-64
Иркутск (395) 279-98-46	Нижний Новгород (831)429-08-12	Симферополь (3652)67-13-56	Ярославль (4852)69-52-93
К иргизия (996)312-96-26-47	К азахстан (772)734-952-31	Т аджикистан (992)427-82-92-69	710031415115 (4002)00 02 00

Эл. почта erg@nt-rt.ru || Сайт: http://energomera.nt-rt.ru